Subscribe to our Newsletter and we will send you news and information about Wimasis

Suscribe
Technical University of Munich
Molecular Food Technology and Safety
«
Thanks to Wimasis we are now able to extract more information from every image we take
»
Dr. Tobias Fromme
Research scientist, Chair for Molecular Nutritional Medicine Technische Universität München
At the chair of Molecular Nutritional Medicine we study the balance between energy intake and expenditure. Thermogenic brown adipocytes profoundly contribute to the latter by dissipating nutrient energy in the form of heat. Characteristic features of brown as compared to white adipocytes are the lower size and greater number of lipid droplets as well as the smaller overall cell size.

Wimasis has developed a custom solutiom to us to automatically determine adipocyte size and number in images of histological sections that saves us hours and hours of manual counting and measuring. Even better, in cooperation with Wimasis, we established an image analysis procedure enabling us to quantify lipid droplet size and number in images of cultured adipocytes. A task that is impossible to perform manually and far less efficient with off-the-shelf particle recognition software in our hands.

With Wimasis image analyses we do not only save a lot of time, but are even able to extract more quantitative information out of every image we take.
Products they are using
Centro de Investigaciones Biológicas (CIB-CSIC)
Autophagy in Development and Disease
Our lab uses cellular and animal models to understand the physiological roles of autophagy and its implications during disease.

Autophagy is an essential intracelullar degradation pathway that recycles cell components generating new building blocks and energy to maintain cellular homeostasis. Autophagy plays an important role in the response to nutrient starvation; the recycling of damaged organelles and is a survival mechanism under stress conditions. In addition, autophagy could as well participate in programmed cell death.

We are interested in the implication of autophagy during development and in the relationship of autophagy with basic processes such as proliferation, differentiation and cell death. Moreover we want to understand how autophagy deregulation may play a role in several pathological situations such as cancer and neurodegenerative conditions.

We have several projects with pharmaceutical companies to screen for new drugs that modulate autophagy with the aim to find new treatments for cancer, neurodegenerative diseases and other pathological conditions.

Wimasis has allowed us to speed up and standardize the process of autophagosome quantification in cells and tissues.
View case study
The Ludwig-Maximilians-University (LMU) Munich
The division of clinical pharmacology (Prof. Dr. Stefan Endres, work group of Dr. David Anz)
For the homeostasis of the immune system communication between the different types of immune cells is of major importance. Communication takes place via soluble factors like cytokines and via direct cell-cell-interaction.

For example during the generation of an immune response, where antigen presenting cells that have processed an antigen and got maturated by pathogen-associated-molecular-patterns secret different types of cytokines in order to activate surrounding immune cells and attract t-helper-cells. Only if these t-helper-cells express the right t-cell-receptor for the specific antigen, an immune response can be evoked. This process is important in the context of defense against invading pathogens, but also for example in the context of immunological recognition and eventually rejection of tumor cells.

In cooperation with Wimasis we were able to develop a new method which can be used to automatically analyze migration and interaction of cells.
View case study
web design with ❤ by Gavisa TIC